[大数据] 零基础系统深入学习机器学习精品课程

[复制链接]
王志琦先生 发表于 2019-10-1 19:22:00 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题
 
下载地址
提取码: w6ee
售价:50u币 [记录] 下载权限:不限
50
您未购买

u币

[购买VIP]   [1元=10U币多充多送]  [签到赚币] [付费代搭建]

本站资源(zhuatou.cn)仅供个人 学习研究,版权归作者所有,如有侵权请联系我们24小时删除。


  零基础系统深入学习机器学习精品课程教程下载。本教程适合人工智能初学者;想系统学习机器学习,理解机器学习流行模型的研发人员;希望查漏补缺,巩固机器学习基础的从业者;对机器学习有浓厚兴趣的其他相关人员。备注:本课程为音频+文字课程。
  第一个模块是机器学习概观,介绍机器学习中超脱于具体模型和方法之上的一些共性问题,将从概率的两大派别开始。众所周知,概率在机器学习中扮演着核心角色,而频率学派与贝叶斯学派对概率迥异的认知也将机器学习一分为二,发展出两套完全不同的理论体系。正所谓兼听则明偏听则暗,理解机器学习时应该看到这同一枚硬币的两面,以获得完整的认知。除此之外,本模块还涵盖了计算学习等机器学习的理论问题,以及关于模型和特征的一些实验主题。
  第二个模块将讨论频率学派发展出的机器学习理论——统计学习。统计机器学习的核心是数据,它既从数据中来,利用不同的模型去拟合数据背后的规律;也到数据中去,用拟合出的规律去推断和预测未知的结果。统计学习中最基础的模型是线性回归,几乎所有其他模型都是从不同角度对线性回归模型做出的扩展与修正。因此,在这个模块中,我将以线性模型为主线,和你一起浏览它的万千变化,观察从简单线性回归到复杂深度网络的发展历程。
  第三个模块将讨论贝叶斯学派发展出的机器学习理论——符号学习,也就是概率图模型。和基于数据的统计学习相比,基于关系的图模型更多地代表了因果推理的发展方向。贝叶斯主义也需要计算待学习对象的概率分布,但它利用的不是海量的具体数据,而是变量之间的相关关系、每个变量的先验分布和大量复杂的积分技巧。在这个模块中,我将围绕概率图模型中的表示、推断、学习三大问题展开介绍,认识贝叶斯面纱下的机器学习。
  备注:本课程为音频+文字课程。
 

零基础系统深入学习机器学习精品课程

零基础系统深入学习机器学习精品课程

  下载地址
抓头源码!一个免费分享源码的地方!
版权申明:资源所有权归属原创作者所有,本站仅提供交流学习之用,切勿用于商业用途 本贴地址:http://cf4.top/thread-3692-1-1.html 上篇帖子: java零基础快速入门到精通VIP高端精品课程 下篇帖子: MySQL最新高级核心知识面试指南 基础 系统 深入 入学 学习
回复 关闭延时

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

抓头网--专业精品商业源码分享
官网QQ群

211253332

周一至周日9:00-23:00

反馈建议

414778833@qq.com 在线QQ咨询

我们一直在用心服务

© 2001-2020 技术文章分享 版权所有工业信息产业部ICP备案号: 浙ICP备2023041498号-2

|网站地图|网站地图